16=a^2+2^2

Simple and best practice solution for 16=a^2+2^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16=a^2+2^2 equation:



16=a^2+2^2
We move all terms to the left:
16-(a^2+2^2)=0
We get rid of parentheses
-a^2+16-2^2=0
We add all the numbers together, and all the variables
-1a^2+12=0
a = -1; b = 0; c = +12;
Δ = b2-4ac
Δ = 02-4·(-1)·12
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-1}=\frac{0-4\sqrt{3}}{-2} =-\frac{4\sqrt{3}}{-2} =-\frac{2\sqrt{3}}{-1} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-1}=\frac{0+4\sqrt{3}}{-2} =\frac{4\sqrt{3}}{-2} =\frac{2\sqrt{3}}{-1} $

See similar equations:

| 2/(4x-1)=x+7 | | 3(u+10)=3 | | 3x+4x+5=4x+7 | | C(q)=100+2q2 | | -20+8x-2x=40 | | 10x-7=6x+13 | | (8y+4)(4y+8)=(15y-9) | | m/4+5=25 | | 19=-5x-6(-3+15)+5 | | (3x+18)+93=90 | | 8x+28=-11 | | 11-d=15 | | (-1.2x+9)^2=0 | | (8y+4)(4y+8)=15y-9 | | 0=11/k | | 5x-2x+6=12 | | X/9+6y=36 | | 7(x+1)=10x5 | | 2m^2-5m-19=0 | | 2m^2-5-19=0 | | 6a=9a^2 | | 3=0.014x^2-1.12x+28.24 | | 5-5(3x-2)+3x=5-15x-10+3x=18x-5 | | 5.4=x/5 | | 21+10x=3x | | 5x+1/6)+(2x+1/3)=2 | | n+1-3n=-5=n=1-2n | | 25x^2-5=31 | | 6y+2(y-3)=5(y+1)-4 | | 18-8m=(5m+3)-3m | | 85=-4x-5x+4 | | 12(x−28)=1+8x |

Equations solver categories